Stonehenge, in southern
England, was built thousands
of years ago. Various
hypotheses have bean
proposed about its function,
including a burial ground,

a healing site, and a place
for ancestor worship. One

of the more intriguing ideas

suggests that Stonghenge

was an cbservatory, allowing
measurements of some of
the quantities discussed

in this chapter, such as
position of ohjects in space
and time intervals between
repeating celestial events.
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Each chapter in this textbook will begin with a paragraph
related to a storyline that runs throughout the text. The staryline centers on vou: an
inguisitive physics student. You could live anywhere in the world, but let's say you
live in sauthern California, wherea one of the authors lives. Most of yvour observations
will ocour there, although you will take trips to other locations. As you go through
vour everyday activities, you ses physics in action all around you, In fact, you can't get
away from physics! As you ohserve phanomena at the beginning of each chapter,
you wiil ask yeurself, "Why does that happen?” You might take measurements with
your smartphone. You might look for related videos on YouTube or photographs on
an image search site. You are lucky indead because, in addition to those resources,
you have this textbook and the expertise of your instructor to help you understand
the exciting physics surrounding you. Let's fook at your first observations as we begin
your storyline. You have just bought this textbook and have flipped through some of
its pages. You notice a page of conversions on the inside back cover. You notice in
the entries under “Length” the unit of a fight-year. You say, "Wait a minute! {(You will
say this often in the upcoming chapters.) How can a unit based on a vear be a unit of
fength?” As you lock farther down the page, you see 1 kg == 2.2 |b {lb is the abbrevia-
tion for pound; b is from Latin fibrs pondol under the heading "Some Approximations
Useful for Estimation Preblems.” Noticing the "approximately equal”™ sign (=), you
wonder what the exact conversion is and look upvward on the page to the heading
"Mass,” since a kilogram is & unit of mass. The relation between kilograms and
pounds is nct there! Why not? Your physics adventure has begun!

CONNECTIONS The secend paragranh in each chapter will explain how
the material in the chaptar connects to that in the previous chaptar and/or future
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chapters. This feature will help you see that the textbook is not a collection of
unreiated chapters, but rather is a structure of understanding that we are building,
step by step. These paragraphs will provide a roadmap through the concepts and
principles as they are introduced in the text. They will justify why the material in
that chapter is presented at that time and help ycu to see the “big picture” of the
study of ghysics. In this first chapter, of course, we cannot connect to a previous
chapter. We will simply look ahead to the present chapter, in which we discuss
some preliminary concepts of measursment, units, modeling, and estimation that
we will need throughout alf the chapters of the text,

Standards of Length, Mass, and Time

To describe natural phenomena, we must make measurements of various aspects
of nature. Each measurement is associated with a physical quantity, such as the
length of an object. The laws of physics are expressed as mathematical relation-
ships among physical quantities that we will introduce and discuss throughout the
book. In mechanics, the three fundamental quantities are length, mass, and fime. All
other quantities in mechanics can be expressed in terms of these three.

If we are to report the results of a measurement to someone who wishes to
reproduce this measurement, a starndard must be defined. For example, if someone
reports that a wall is 2 meters high and our standard unit of length is defined to be
1 meter, we know that the height of the wall is twice our basic length unit. Whatever
is chosen as a standard must be readily accessible and must possess some property
that can be measured reliably. Measurement standards used by different people in
different places—throughout the Universe—must yield the same result. In addi-
tion, standards used for measurements must not change with time.

In 1960, an international committee established a set of standards for the fun-
damental quantities of science. It is called the SI (Systéme International), and its
fundamental units of length, mass, and time are the meler, kilogram, and second,
respectively. Other standards for SI fundamental units established by the commit-
tee are those for temperature (the kefvin), electric current {the ampere), luminous
intensity (the candela), and the amount of substance (the mols).

Length

We can identify length as the distance between two points in space. In 1120, the
king of England decreed that the standard of length in his country would be named
the yard and would be precisely equal to the distance from the tip of his nose to the
end of his outstretched arm. Similarly, the original standard for the foot adopted
by the French was the length of the royal foot of King Louis XIV. Neither of these
standards is constant in time; when a new king took the throne, length measure-
ments changed! The French standard prevailed until 1799, when the legal standard
of length in France became the meter (m), defined as one ten-millionth of the
distance from the equator to the North Pole along one particular longitudinal line
that passes through Paris. Notice that this value is an Earth-based standard that
does not satisfy the requirement that it can be used throughout the Universe.

Table 1.1 (page 4) lists approximate values of some measured lengths. You should
study this table as well as the next two tables and begin to generate an intuition for
what is meant by, for example, a length of 20 centimeters, a mass of 100 kilograms,
or a time interval of 3.2 X 107 seconds.

As recently as 1960, the length of the meter was defined as the distance between
two lines on a specific platinum~iridium bar stored under controlled conditions
in France. Current requirements of science and technology, however, necessitate
more accuracy than that with which the separation between the lines on the bar
can be determined. In the 1960s and 1970s, the meter was defined to be equal to

PITPALL PREVENTION 14

Reasonable Values Generating
intuition about typical values of

quantities when solving problems

is impertant because you must
think about your end result and
determine if it seems reasonable.
For example, if you are calculating
the mass of a housefty and arrive
at a vaiue of 100 kg, this answer is
unreasonable and there is an error
somewhere.
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Figure 1.7 (2) International
Prototype of the Kilogram, an
accurate copy of the International
Standard Kilogram kept at Sévres,
France, is housed under a double
bell jar in a vault at the National
Institute of Standards and Tech-
nology. (b) A cesium fountain
atormic clock. The clock will
neither gain nor lose a second

in 20 million years.

© Approximate Values of Some Measured Lengths

Length (m)
Distance from the Earth to the most remote known quasar 9.7 % 10%
Distance from the Earth to the most remote normal galaxies 3 x 10%
Distance from the Earth to the nearest large galaxy (Andromeda) 2 x 10%
Distance from the Sun to the nearest star (Proxima Centauri) 4 x 101
One light-year 0.46 % 101
Mean orbit radius of the Earth about the Sun 1.50 > 101
Mean distance from the Earth to the Moon 3.84 x 108
Distance from the equator to the North Pole 1.00 X 167
Mean radius of the Earth 6.37 X 10°
Typical altitude (above the surface) of a satellite orbiting the Farth 2 % 10°
Length of a foothall field 9.1 x 10
Length of a housefly ‘ 5 x 1073
Size of smallest dust particles ~ 1071
Size of cells of most living organisims ~ 107%
Diameter of a hydrogen atom ~ 10710
Diameter of an atomic nucleus ~107M
Diameter of a proton ~ 10716

1 650 765.7% wavelengths! of orange-red light emitted from a krypton-86 lamp. In
October 1983, however, the meter was redefined as the distance traveled by light
in vacuum during a time interval of 1/299 792 458 second. In effect, this latest
definition establishes that the speed of light in vacuum is precisely 299 792 458
meters per second. This definition of the meter is valid throughout the Universe
based on our assumption that light is the same everywhere. The speed of light also
allows us to define the light-year, as mentioned in the introductory storyline: the
distance that light travels through empty space in one year. Use this definition and
the speed of light to verify the length of a light-year in meters as given in Table 1.1.

Mass

We will find that the mass of an object is related to the amount of material that is
present in the object, or to how much that object resists changes in its motion. Mass
is an inherent property of an object and is independent of the object’s surround-
ings and of the method used to measure it. The SI fundamental unit of mass, the
kilogram (kg), is defined as the mass of a specific platinum~iridium alloy cylinder
kept at the International Bureau of Weights and Measures at Sevres, France. This
mass standard was established in 1887 and has not been changed since that time
because platinum-iridium is an unusually stable alloy. A duplicate of the Sévres
cylinder is kept at the National Institute of Standards and Technology (NIST) in
Gaithersburg, Maryland (Fig. 1.1a). Table 1.2 lists approximate values of the masses
of various objects.

In Chapter 5, we will discuss the difference between mass and weight. In anticipa-
tion of that discussion, let’s look again at the approximate equivalence mentioned
in the introductory storyline: 1 kg = 2.2 Ib. It would never be correct to claim that
a number of kilograms equals a number of pounds, because these units represent
different variables. A kilogram is a unit of mass, while a pound is a unit of weight.
That's why an equality between kilograms and pounds is not given in the section of
conversions for mass on the inside back cover of the textbook.

1We wilt use the standard international notation for numbers with more than three digits, in which groups of three
digits are separated by spaces rather than commas. Therefore, 10 GO0 is the same as the common American netation
of 10,000, Simifarly, 7 = 8.14159265 is written a5 3.141 592 G5.
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Approximate : . Approximate Values of
Masses of Various Objects Some Time Intervals

Mass (kg) Time Interval (s)
Observable Age of the Universe 4 107
Universe ~ 1082 Age of the Earth 1.8 % 107
Milky Way Average age of a college student - 6.3 x 108
galaxy ~ 104 One year 3.2 X 107
Sun 1.99 X 10% One day 8.6 X 10"
Farth 598 x 10% One class period 3.0 x 1%
Moon %36 % 102 Time interval between normal
’ . heartbeats g x 107!
Shark - 10‘ Period of audible sound waves ~ 1073
Human ~ 10 Period of typical radio waves ~ 1078
Frog : ~ 107! Period of vibration of an atom
Mosquiito -~ 107° in a solid ~ 10713
Bacterium ~ 1 10718 Period of visible light waves ~ 10715
Hydrogen atom  1.67 X 107% Duration of a nuclear collision -~ 10722
Electron 911 x 10°¥ Time interval for light to cross
‘ a proton ~ 10
Time

Before 1967, the standard of time was defined in terms of the mean solar day. (A
solar day is the time interval between successive appearances of the Sun at the high-
est point it reaches in the sky each day.) The fundamental unit of a second (s) was
defined as (&)(Hzp) of a mean solar day. This definition is based on. the rotation
of one planet, the Earth. Therefore, this motion does not provide a time standard
that is universal.

In 1967, the second was redefined to take advantage of the high precision attain-
able in a device known as an atomic clock (Fig. 1.1b), which measures vibrations of
cesium atoms. One second is now defined as 9 192 631 770 times the period of
vibration of radiation from the cesium-133 atom.? Approximate values of time
intervals are presented in Table 1.3,

You should note that we will use the notations #ime and time interval differently. A
time is a description of an instant relative to a reference time. For example, ¢ = 10.0's
refers to an instant 10.0 s after the instant we have identified as ¢ = 0. As another
example, a #ime of 11:30 a.m. means an instant 11.5 hours after our reference time
of midnight. On the other hand, a time interval refers to duration: he required
30.0 minutes to finish the task. It is common to hear a “time of 30.0 minutes” in
this latter example, but we will be careful to refer t0 measurements of duration as
time intervals.

Units and Quantities In addition to SI, another system of units, the U8, custom-
ary system, is still used in the United States despite acceptance of SI by the rest of the
world. In this system, the units of length, mass, and time are the foot (ft), slug, and
second, respectively. In this book, we shall use SI units because they are almost uni-
versally accepted in science and industry. We shall make some limited use of U.S.
customary units in the study of classical mechanics.

In addition to the fundamental SI units of meter, kilogram, and second, we can
also use other units, such as millimeters and nanoseconds, where the prefixes milli-
and nano- denote multipliers of the basic units based on various powers of ten.
Prefixes for the various powers of ten and their abbreviations are listed in Table 1.4
(page 6). For example, 1079 m is equivalent to 1 millimeter (mm), and 10° m corre-
sponds to 1 kilometer (km). Likewise, 1 kilogram {kg) is 10° grams (g), and 1 mega
volt (MV?} is 108 volts (V).

*Period is defined as the time inter val needed for one complete vibration,
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Atable of the letters in the »
Greek alphabet is provided
on the back endpaper
of this haok.

~ Prefixes for Powers of Ten

Power Prefix Abbreviation Power Prefix Abbreviation
i yocto y 10% kilo k
107 zepto z 10¢ mega M
10718 atto a 10° giga G
10718 femto f 102 tera T
10712 pico p 1015 peta P
1079 nano n 108 exa E
10-6 micro i 10% zetta 7
1073 milli m 10% yotta Y
102 centi c
1671 deci d

The variables length, mass, and time are examples of fundamental quantities. Most
other variables are derived quantities, those that can be expressed as a mathematical

“combination of fundamental quantities. Common examples are area (a product of

two lengths) and speed (a ratio of a length to a time interval).
Another example of a derived quantity is density. The density p (Greek letter
rhoj of any substance is defined as its mass per unit volume:

{1.1)

©
el
=iz

In terms of fundamental quantities, density is a ratio of a mass to a product of three
lengths. Aluminum, for example, has a density of 2,70 X 10° kg/m?, and iron has
a density of 7.86 X 10° kg/m3, An extreme difference in density can be imagined
by thinking about holding a 10-centimeter {cm) cube of Styrofoam in one hand
and a 10-cm cube of lead in the other. See Table 14.1 in Chapter 14 for densities of
several materials.

ij%;%mm{ QiHZ 1.1 In a machine shop, two cams are produced, one of aluminum
. and one of iron. Both cams have the same mass. Which cam is larger? (a) The
aluminum cam is larger. (b) The iron cam is larger. (c) Both cams have the
¥ SaIe size.

Modeling and Alternative Representations

Most courses in general physics require the student to learn the skills of prob-
lem solving, and examinations usually include problems that test such skills. This
section describes some useful ideas that will enable you to enhance your under-
standing of physical concepts, increase your accuracy in solving problems, elim-
inate initial panic or lack of direction in approaching a problem, and organize
your work.

One of the primary problem-solving methods in physics is to form an appropri-
ate model of the problem. A model is a simplified substitute for the real problem
that allows us to solve the problem in a relatively simple way. As long as the predic-
tions of the model agree to our satisfaction with the actual behavior of the real sys-
tem, the model is valid. If the predictions do not agree, the model must be refined
or replaced with another model. The power of modeling is in its ability to reduce a
wide variety of very complex problems to a limited number of classes of problems
that can be approached in similar ways.

In science, a model is very different from, for example, an architect’s scale model
of a proposed building, which appears as a smaller version of what it represents.
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A scientific model is a theoretical construct and may have no visual similarity to the
physical problem. A simple application of modeling is presented in Example 1.1,
and we shall encounter many more examples of models as the text progresses.

Models are needed because the actual operation of the Universe is extremely
complicated. Suppose, for example, we are asked to solve a problem about the
Earth’s motion around the Sun. The Farth is very complicated, with many pro-
cesses occurring stmultaneously. These processes include weather, seismic activity,
and ocean movements as well as the multitude of processes involving human activ-
ity. Trying to maintain knowledge and understanding of all these processes is an
impaossible task.

The modeling approach recognizes that none of these processes affects the
motion of the Earth around the Sun to a measurable degree. Therefore, these
details are all ignored. In addition, as we shall find in Chapter 13, the size of the
Earth does not affect the gravitational force between the Earth and the Sun; only
the masses of the Earth and Sun and the distance between their centers determine
this force. In a simplified model, the Earth is imagined to be a particle, an object
with mass but zero size. This replacement of an extended object by a particle is
called the particle model, which is used extensively in physics. By analyzing the
motion of a particle with the mass of the Farth in orbit around the Sun, we find
that the predictions of the particle’s motion are in excellent agreement with the
actual motion of the Earth.

The two primary conditions for using the particle model are as follows:

motion.
» Any internal processes occurring in the object are of no consequence in the
analysis of its motion.

Both of these conditions are in action in modeling the Earth as a particle. Its radius
is not a factor in determining its motion, and internal processes such as thunder-
storms, earthquakes, and manufacturing processes can be ignored.

Four categories of models used in this book will help us understand and solve
physics problems. The first category is the geometric model. In this model, we form
a geometric construction that represents the real situation. We then set aside the
real problem and perform an analysis of the geometric construction. Consider a
popular problem in elementary trigonometry, as in the following example. 1

# The size of the actual object is of no consequence in the analysis of its
F
|
|

Finding the Height of 3 Tree

You wish to find the height of a tree but cannot measure it directly. You stand 50.0 m from the tree and determine that a
line of sight from the ground to the top of the tree makes an angle of 25.0° with the ground. How tall is the tree?

Figure 1.2 shows the trec and a right triangle correspond-
ing to the information in the problem superimposed over it.
(We assume that the tree is exactly perpendicular to a perfectly
{lat ground.) In the triangle, we know the length of the hori-
zontal leg and the angle between the hypotenuse and the hori-

zontal ieg. We can find the height of the tree by calculating the P
length of the vertical leg. We do so with the tangent function: é,
. [ 50.0 m |
ta § = opposite side __h
T djacentside  50.0 m Figure 1.2 (Example 1.1) The height of a tree can be found by
measuring the distance from the tree and the angle of sight to
fi= (50.0 m) tan & = (50.0 m) tan 25.0° = 23,3 m the top above the ground. This problem is a simple example of

geometrically modeling the actual problem.
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You may have solved a problem very similar to Example 1.1 but never thought
about the notion of modeling. From the modeling approach, however, once we
draw the triangle in Figure 1.2, the triangle is a geometric model of the real prob-
lem; it is a substifute. Until we reach the end of the problem, we do not imagine
the problem to be about a #ree but to be about a triangle. We use trigonometry to
find the vertical leg of the triangle, leading to a value of 23.3 m. Because this leg
represents the height of the tree, we can now return to the original problem and
claim that the height of the tree is 23.3 m.

Other examples of geometric models include modeling the Earth as a perfect
sphere, a pizza as a perfect disk, a meter stick as a long rod with no thickness, and
an electric wire as a long, straight cylinder.

The particle model is an example of the second category of models, which we
will call simplification models. In a simplification model, details that are not sig-
nificant in determining the outcome of the problem are ignored. When we study
rotation in Chapter 10, objects will be modeled as rigid objects. All the molecules in
a rigid object maintain their exact positions with respect to one another. We adopt
this simplification model because a spinning rock is much easier to analyze than a
spinning block of gelatin, which is not a rigid object. Other simplification models
will assume that quantities such as friction forces are negligible, remain constant,
or are proportional to some power of the object’s speed. We will assume wuniform
metal beams in Chapter 12, laminar flow of fluids in Chapter 14, massless springs in
Chapter 15, symmetric distributions of electric charge in Chapter 23, resistance-free
wires in Chapter 27, thin lenses in Chapter 34. These, and many more, are simplifi-
cation models.

The third category is that of analysis models, which are general types of prob-
lems that we have solved before. An important technique in problem solving is to
cast a new problem into a form similar to one we have already solved and which can
be used as a model. As we shall see, there are about two dozen analysis models that
can be used to solve most of the problems you will encounter. All of the analysis
models in classical physics will be based on four simplification models: particle, sys-
tem, rigid object, and wave. We will see our first analysis models in Chapter 2, where
we will discuss them in more detail.

The fourth category of models is structural models. These models are gener-
ally used to understand the behavior of a system that is far different in scale from
our macroscopic world—either much smaller or much larger-—so that we cannot
interact with it directly, As an example, the notion of a hydrogen atom as an elec-
tron in a circular orbit around a proton is a structural model of the atom. The
ancient geocentric model of the Universe, in which the Earth is theorized to be at the
center of the Universe, is an example of a structural model for something larger in
scale than our macroscopic world.

Intimately related to the notion of modeling is that of forming alternative
representations of the problem that you are solving. A representation is a
method of viewing or presenting the information related to the problem. Sci-
entists must be able to communicate complex ideas to individuals without scien-
tific backgrounds. The best representation to use in conveying the information
successfully will vary from one individual to the next, Some will be convinced
by a well-drawn graph, and others will require a picture. Physicists are often
persuaded to agree with a point of view by examining an equation, but non-
physicists may not be convinced by this mathematical representation of the
information.,

A word problem, such as those at the ends of the chapters in this book, is one
representation of a problem. In the “real world” that you will enter after gradua-
tion, the initial representation of a problem may be just an existing situation, such
as the effects of climate change or a patient in danger of dying. You may have to
identify the important data and information, and then cast the situation yourself
into an equivalent word problem!
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Considering alternative representations can help you think about the informa-
tion in the problem in several different ways to help you understand and solve it,
Several types of representations can be of assistance in this endeavor:

s Mental representation, From the description of the problem, imagine a

scene that describes what is happening in the word problem, then let time
progress so that you understand the situation and can predict what changes
will oceur in the situation. This step is critical in approaching every problem.
Pictorial representation. Drawing a picture of the situation described in the
word problem can be of great assistance in understanding the problem. In
Example 1.1, the pictorial representation in Figure 1.2 allows us to identify
the triangle as a geometric model of the problem. In architecture, a blueprint
is a picrorial representation of a proposed building,

Generally, a pictorial representation describes what you would see if you
were observing the situation in the problem. For example, Figure 1.3 shows a
pictorial representation of a baseball player hitting a short pop foul. Any coor-
dinate axes included in your pictorial representation will be in two dimen-
sions: xand yaxes.

Simplified pictorial representation. It is often useful to redraw the picto-
rial representation without complicating details by applying a simplifica-

tion model. This process is similar to the discussion of the particle model
described earlier. In a pictorial representation of the Earth in orbit around
the Sun, you might draw the Earth and the Sun as spheres, with possibly
some attempt te draw continents to identify which sphere is the Earth,

In the simplified pictorial representation, the Earth and the Sun would

be drawn simply as dots, representing particles, with appropriate Iabels.
Figure 1.4 shows a simplified pictorial representation corresponding to the
pictorial representation of the baseball trajectory in Figure 1.3. The nota-
tions 7, and v, refer to the components of the velocity vector for the baseball,
We will study vector components in Chapter 3. We shall use such simplified
pictorial representations throughout the book.

Graphical representation. In some problems, drawing a graph that describes
the situation can be very helpful. In mechanics, for example, position-time
graphs can be of great assistance. Similarly, in thermodynamics, pressure—
volume graphs are essential to understanding. Figure 1.5 shows a graphical
representation of the position as a function of time of a block on the end of a
vertical spring as it oscillates up and down. Such a graph is helpful for under-
standing simple harmonic motion, which we study in Chapter 15.

A graphical representation is different from a pictorial representation,
which is also a two-dimensional display of information but whose axes, if
any, represent length coordinates. In a graphical representation, the axes may
represent any two related variables, For example, a graphical representation
may have axes for temperature and time. The graph in Figure 1.5 has axes
of vertical position y and time t. Therefore, in comparison to a pictorial rep-
resentation, a graphical representation is generally not something you would
see when observing the situation in the problem with your eves.

Tabular representation. It is sometimes helpful to organize the information
in tabular form to help make it clearer. For example, some students find that
making tables of known quantities and unknown quantities is helpful. The
periodic table of the elements is an extremely useful tabular representation
of information in chemistry and physics.

Mathematical representation. The ultimate goal in solving a problem is
often the mathematical representation, You want to move from the infor-
mation contained in the word problem, through various representations of
the problem that allow you to understand what is happening, to one or more
equations that represent the situation in the problem and that can be solved
mathematically for the desived result.

Figure 1.3 A pictorial represen-
tation of a pop foul being hitbya
baseball player.

Figure 1.4 A simplified pictorial
representation for the situation
shown in Figure 1.3.

A
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Figure 1.5 A graphical represen-
tation of the position as a function
of time of a black hanging from a
spring and oscillating.
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FITEALL PREVENTION 1.2
Symbols for Quantities' Some
quantities-have a small number
of symbols that represent them.
For example, the symbol for time
is almost always ¢, Other quanti-
ties might have various symbols
depending on the nsage. Length
may be described with symbols
such as x, 3, and z (for position);
r (for rading); a, b, and ¢ (for the
legs of a right triangle); € (for the
length of an object); 4 (for a dis-
tance); A (for a height); and

s0 forth.

Physics and Measurement

Dimensional Analysis

In physics, the word dimension denotes the physical nature of a quantity. The dis-
tance between two points, for example, can be measured in feet, meters, or fur-
longs, which are all different units for expressing the dimension of length,

The symbols we use in this book to specify the dimensions of length, mass, and
time are L, M, and T, respectively.? We shall often use brackets [ ] to denote the
dimensions of a physical quantity. For example, the symbol we use for speed in this
book is v, and in our notation, the dimensions of speed are written [v] = L/T. As
another example, the dimensions of area A are [A] = L2, The dimensions and units
of area, volume, speed, and acceleration are listed in Table 1.5. The dimensions of
other quantities, such as force and energy, will be described as they are introduced
in the text.

In many situations, you may have to check a specific equation to see if it
matches your expectations. A useful procedure for doing that, called dimen-
sional analysis, can be used because dimensions can be treated as algebraic
quantities. For example, quantities can be added or subtracted only if they have
the same dimensions, Furthermore, the terms on both sides of an equation must
have the same dimensions, By following these simple rules, you can use dimen-
sional analysis to determine whether an expression has the correct form. Any
relationship can be correct only if the dimensions on both sides of the equation
are the same.

To illustrate this procedure, suppose you are interested in an equation for the
position x of a car at a time ¢#if the car starts from rest at ¥ = 0 and moves with con-
stant acceleration a. The correct expression for this situation is x =  ai? as we show
in Chapter 2. The quantity x on the left side has the dimension of length. For the
equation to be dimensionally correct, the quantity on the right side must also have
the dimension of length. We can perform a dimensional check by substituting the
dimensions for acceleration, I/T? (Table 1.5), and time, T, into the equation. That
is, the dimensional form of the equation x = Ja? is

L
= .=
L= = =1L
The dimensions of time cancel as shown, leaving the dimension of length on the
righthand side to match that on the left.
A more general procedure using dimensional analysis is to set up an expression
of the form

X o a‘ﬂt}.’l

where n and s are exponents that must be determined and the symbol = indicates
a proportionality. This relationship is correct only if the dimensions of both sides
are the same. Because the dimension of the left side is length, the dimension of the
right side must also be length. That is,

[(J”fm =1L = LlTO

©. Dimensions and Units of Four Derived Quantities

i
i

Quantity Area (4) Volume (¥) Speed (z) Acceleration (@)
Dimensions 12 L3 L/T L/T?

81 units m? m? m/s m/s?

U.S. customary units ft? ft? fi/s ft/s2

*The dimensions of a quantity will be symbalized by a capitalized, nonitalic letter such as L or T. The algebraic symbol
for the quantity itself will be an italicized letter such as L for the length of an chiect or ¢ for time.
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Because the dimensions of acceleration are L/T? and the dimension of time is T,
we have

(L/TQ)”T'” =LIT? — (L'FTTM - 271) = LIT?

The exponents of I, and T must be the same on both sides of the equation. From
the exponents of L, we see immediately that » = 1. From the exponents of T, we see
that m — 2n = 0, which, once we substitute for », gives us m = 2, Retarning to our
original expression x « ¢"", we conclude that x o« af®.

g
a5

L2 WICK QUIZ 1.2 True or False: Dimensional analysis can give you the numer- 7
- ical value of constants of proportionality that may appear in an algebraic |
2 expression. |

Aralysis of an Equation

Show that the expression v = af, where v represents speed, a acceleration, and ¢ an instant of time, is dimensionally

correct.
B
L
Identify the dimensions of v from Table 1.5: [v] = T
. . . , L L |
Identify the dimensions of g from Table 1.5 and multiply [af] = b T = T |

by the dimensions of i

as v = gaf, it would be dimensionally incorrect. Try it and see!)

|
Therefore, v = gfis dimensionally correct because we have the same dimensions on both sides. (If the expression were given
\
|

Analysis of a Power Law

Suppose we are told that the acceleration 4 of a particle moving with uniform speed v in a circle of radius ris proportional
to some power of 1, say r*, and some power of v, say v”. Determine the values of » and m and write the simplest form of an
equation for the acceleration.

Write an expression for @ with a dimensionless constant a= k"
of proportionality k:

L L ) Ln+m
Substitute the dimensions of ¢, r, and »; s =L*"l=] =

T- T T
Equate the exponents of L and T so that the dimensional nt+tm=landm= 2

equation is balanced:

Solve the two equations for n: n= -1 |

2
. . . s kg
Write the acceleration expression: a=krlev? = f—
7

In Section 4.4 on uniform circular motion, we show that 2 = 1 if a consistent set of units is used. The constant k would not
equal 1 if, for example, v were in km/h and you wanted & In m/s%,
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PITFALL PREVENTION 1.2

Always Include Units When per-
forming calculations with numer--
ical values, include the units for
every quantity and carry the units
through the entire calculation,
Avoid the temptation to drop the

- ,units early and then attach the

expected uniis once you haye an’
answer. By including the units in
every step, you can detect errors if

the units for the answer turn out -

to be incorrect.

Physics and Measurement

Conversion of Units

Sometimes it is necessary to convert units from one measurement system to another
or convert within a system (for example, from kilometers to meters). Conversion
factors between SI and U.S. customary units of length are as follows:

1mile = 1609m =1.609km 1ft = 0.3048m = 3048 ¢m
lm = 3937in. = 3.2811#t lin, = 0.0254m = 2.54 cm (exactly)

A more complete list of conversion factors can be found in Appendix A,

Like dimensions, units can be treated as algebraic quantities that can can-
cel each other. For example, suppose we wish to convert 15.0 in. to centimeters.
Because 1 in. is defined as exactly 2.54 cm, we find that

, . 2.54 cm .
15.0in. = (15,0 iz’ )t ——— 1 = 38.1 cm
1in? -
where the ratio in parentheses is equal to 1. We express 1 as 2.54 cm/1 in. (rather
than 1 in./2.54 ¢m) so that the unit “inch” in the denominator cancels with the unit
in the original quantity. The remaining unit is the centimeter, our desired result.

{33UICK QUIZ 1.2 The distance between two cities is 100 mi, What is the number
. of kilometers between the two cities? {a) smaller than 100 (b) larger than 100
= (c) equal to 100

Is He Speeding?

On an interstate highway in a rural region of Wyoming, a car is traveling at a speed of 38.0 m/s. Is the driver exceeding the

speed limit of 75.0 mi/h?

1 mi 60 60 min
Convert meters to miles and seconds to hours: (88.0 mi/%) ( o )( a ) ( 1111]:111 ) = 85.0 mi/h

The driver is indeed exceeding the speed limit and should stow down.

car in km/h?

Answer We can convert our final answer to the appropriate units:
{85.0 mi/h) (

Figure 1.6 shows an automobile speedometer displaying speeds in both mi/h and
km/h. Can you check the conversion we just performed using this photograph?

: What if the driver were from outside the United States and is
familiar with speeds measured in kilometers per hour? What is the speed of the

1 609 m /A1 min

1.609 km

=137 km/h
1 mi ) m/

© Cengage

Figure 1.5 The speedometer of a vehicle
that shows speeds in both miles per hour
and kilometers per hour,

Estimates and Order-of-Magnitude Calculations

Suppose someone asks you the number of bits of data on a typical Blu-ray Disc. In
response, it is not generally expected that you would provide the exact number but
rather an estimate, which may be expressed in scientific notation. The estimate
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may be made even more approximate by expressing it as an order of magnitude,
which is a power of 10 determined as follows:

1. Express the number in scientific notation, with the multiplier of the power
of 10 between 1 and 10 and a unit.

2, If the multiplier is less than 3.162 (the sguare root of 10), the order of mag-
nitude of the number is the power of 10 in the scientific notation. If the
multiplier is greater than 3.162, the order of magnitude is one larger than
the power of 10 in the scientific notaticn.

We use the symbol ~ for “is on the order of.” Use the procedure above to verify
the orders of magnitude for the following lengths:

0.0086m~ 107" m 0.0021m ~ 107%m 790 m ~ 10°m

Usually, when an order-of-magnitude estimate is made, the results are reliable to
within about a factor of 10, :

Inaccuracies caused by guessing too low for one number are often canceled
by other guesses that are too high. You will find that with practice your guessti-
mates become better and better. Estimation problems can be fun to work because
you freely drop digits, venture reasonable approximations for unknown numbers,
make simplifying assumptions, and turn the question around into something you
can answey in your head or with minimal mathematical manipulation on paper.
Because of the simplicity of these types of calculations, they can be performed on a
small scrap of paper and are often called back-of-the-envelope calculations.

Breaths in a Lietime

We start by guessing that the typical human lifetime is about 70 years. Think about the average number of breaths that a per-
sonl takes in 1 min. This number varies depending on whether the person is exercising, sleeping, angry, serene, and so forth.
'To the nearest order of magnitude, we shall choose 10 breaths per minute as our estimate. (This estimate is certainly closer to
the true average value than an estimate of 1 breath per minute or 100 breaths per minute.)

e ) 005

Estimate the number of breaths taken during an average human lifetime.

Find the approximate number of minutes in a year:

>_6><105min

lyr 1 day 1h |
Find the approximate number of minutes in a 70-year number of minutes = (70 yr)}(6 X 10° min/yr) |
lifetime: = 4 X 107 mnin ‘
Find the approximate number of breaths in a lifetime: nutmber of breaths = {10 breaths/min)(4 X 107 min)

4 ¥ 10® breaths

I

Therefore, a person takes on the order of 10° breaths in a lifetime. Notice how much simpler it is in the first calcuiation above
to multiply 400 X 25 than it is to work with the more accurate 365 X 24.

What if the average lifetime were estimated as 80 years instead of 70? Would that change our final estimater

Answer We could claim that (80 yr)(6 X 10° min/yr) = 5 X 107 min, so our final estimate should be 5 X 108 breaths, This
answer is still on the order of 10% breaths, so an order-of-magnitude estimate would be unchanged.

Significant Figures

When certain quantities are measured, the measured values are known only to
within the limits of the experimental uncertainty. The value of this uncertainty
can depend on various factors, such as the quality of the apparatus, the skill of
the experimenter, and the number of measurements performed. The number of




i
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“PITEALL PREVEMTION 1.4

Read Carefully Notice that the
rute for addition and subtraction
is different from that for muitipli-
cation and division. For addition
and subtraction, the important
consideration is the number of
dectmal places, not the number of
significant figures.

significant figures in a measurement can be used to express something about the
uncertainty. The number of significant figures is related to the number of numeri-
cal digits used to express the measurement, as we discuss below.

As an example of significant figures, suppose we are asked to measure the radius
of a Blu-ray Disc using a meterstick as a measuring instrument. Let us assume the
accuracy to which we can measure the radius of the disc is +0.1 cm. Because of
the uncertainty of £0.1 cm, if the radius is measured to be 6.0 cm, we can claim
only that its radius lies somewhere between 5.9 cm and 6.1 cm. In this case, we
say that the measured value of 6.0 cm has two significant figures. Note that the
significant figures include the first estimated digit. Therefore, we could write the radius as
(6.0 + 0.1) cm.

Zeros may or may not be significant figures. Those used to position the decimal
point in such numbers as 0.05 and 0.007 5 are not significant. Therefore, there are
one and two significant figures, respectively, in these two values. When the zeros
come after other digits, however, there is the possibility of misinterpretation. For
example, suppose the mass of an object is given as 1 500 g. This value is ambiguous
because we do not know whether the last two zeros are being used to locate the
decimal point or whether they represent significant figures in the measurement.
To remove this ambiguity, it is common to use scientific notation to indicate the
number of significant figures. In this case, we would express the massas 1.5 X 10° g
if there are two significant figures in the measured value, 1.50 X 10° g if there are
three significant figures, and 1.500 X 10? g if there are four. The same rule holds
for numbers less than 1, so 2.3 X 107* has two significant figures (and therefore
could be written 0.000 23) and 2,30 X 107 has three significant figures (and there-
fore written as 0.000 230).

In problem solving, we often combine quantities mathematically through mul-
tiplication, division, addition, subtraction, and so forth, When doing so, you must
make sure that the result has the appropriate number of significant figures. A good
rule of thumb to use in determining the number of significant figures that can be
claimed in a multiplication or a division is as follows:

When multiplying several quantities, the number of significant figures in the
final answer is the same as the number of significant figures in the quantity
having the smallest number of significant figures. The same rule applies to
division.

Let’s apply this rule to find the area of the Blu-ray Disc whose radius we mea-
sured above. Using the equation for the area of a circle,

A= gr?=7(6.0 cm)? = 1.1 X 10? cm?

Ifyou perform this calculation on your calculator, you will likely see 113.097 335 5.
It should be clear that you don’t want to keep all of these digits, but you might
be tempted to report the result as 113 cm?. This result is not justified because it
has three significant figures, whereas the radius only has two. Therefore, we must
report the result with only two significant figures as shown above.

For addition and subtraction, you must consider the number of decimal places
when you are determining how many significant figures to report:

When numbers are added or subtracted, the number of decimal places in the
result should equal the smallest number of decimal places of any term in the
sum or difference.

As an example of this rule, consider the sum
95,2 + 5174 = 28.4

Notice that we do not report the answey as 98.374 because the lowest number of dec-
imal places is one, for 23.2. Therefore, our answer must have only one decimal place.




The rule for addition and subtraction can often result in answers that have a
different number of significant figures than the quantities with which you start. For
example, consider these operations that satisfy the rule:

1.000 1 + 0.000 3 = 1.000 4
1.002 — 0.998 = 0.004

In the first example, the result has five significant figures even though one of
the terms, 0.000 3, has only one significant figure. Similarly, in the second calcu-
lation, the result has only one significant figure even though the numbers being
subtracted have four and three, respectively,

In this book, most of the numerical examples and end-of-chapter problems
will yield answers having three significant figures. When carrying out estima-
tion calculations, we shall typically work with a single significant figure.

If the number of significant figures in the result of a calculation must be reduced,
there is a general rule for rounding numbers: the last digit retained is increased by
1 if the last digit dropped is greater than 5. (For example, 1.346 becomes 1.35.)
If the last digit dropped is less than 5, the last digit retained remains as it is. (For
example, 1,543 becomes 1.34.) If the last digit dropped is equal to 5, the remaining
digit should be rounded to the nearest even number. (This rule helps avoid accu-
mulation of errors in long arithmetic processes.)

In a long calculation invelving multiple steps, it is very important to delay the
rounding of numbers until you have the final result, in order to avoid error accumu-
lation. Wait until you are ready to copy the final answer from your calculator before
rounding to the correct number of significant figures. In this book, we display
numerical values rounded off to two or three significant figures. This occasion-
ally makes some mathematical manipulations look odd or incorrect. For instance,
looking ahead to Example 3.5 on page 62, you will see the operation —17.7 km +
34.6 km = 17.0 km, This looks like an incorrect subtraction, but that is only because
we have rounded the numbers 17.7 km and 34.6 km for display. If all digits in these
two intermediate numbers are retained and the rounding is only performed on the
final number, the correct three-digit result of 17.0 km is obtained.

Installing a Carpet

be 3.46 m. Find the area of the room.

The three fundamental physical quantities of mechanics are length,
mass, and time, which in the SI system have the units meter (m),
kilogram (kg), and second (s), respectively. These fundamental
quantities cannot be defined in terms of more basic quantities.

volwme:

pE

Summary

<4 Significant figure guidelines
used in this book

CPITRALL PREVERNTION 1.5

Symholic Solutions When solving
problems, it is very useful to per-
form the solution completely in
algebraic form and wait urnitil the

veryend to enter norerical vahies -
" into the final symbaolic expression.

This method will save many calen-
lator keystrokes, especially if some
quantities cancel so that you never
have to enter their values into
your cafculator! In addition, you
will enly need to round once, on
the final result.

A carpet is to be installed in a rectangular room whose length is measured to be 12.71 m and whose width is measured to

If you multiply 12,71 m by 3.46 m on your calculator, you will see an answer of 43.976 6 m?. How many of these numbers should
you claim? Our rule of thumb for multiplication tells us that you can claim only the number of significant figures in your
answer as are present in the measured quantity having the lowest number of significant figures. In this example, the lowest
! number of significant figures is three in 3.46 m, so we should express our final answer as 44.0 m?

The density of a substance is defined as its mass per unit

P
=

I

'17 (1.7)

continued
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Concepts and Principles

The method of dimensional analysis is very powerful in solving phys-
ics probiems. Dimensions can be treated as algebraic quantities. By
making estimates and performing order-of-magaitude calculations,
you should be able to approgimate the answer to a problem when
there is nat enough information available to specify an exact solution

completely.

Problem-solving skills and physical understanding can be improved
by modeling the problem and by constructing alternative represen-
tations of the problem. Models helpful in solving problems include
geometric, simplification, analysis, and structural models. Helpful
representations include the mental, pictorial, simplified pictorial,
graphical, tabular, and mathematical representations.

See the Preface for an explanation of the icons used in this problems set.

For additional assessment items for this section, 2o 0 g2 ¢ mECE;%;SSIGN

i. A student is supplied with a stack of copy paper, ruler, com-

pass, scissors, and a sensitive balance. He cuts out various

shapes in various sizes, calculates their areas, measures

their masses, and prepares the graph of Figure TP1.1. (a)

Consider the fourth experimental point from the top. How

far is it verticaily from the bestfit straight line? Express

your answer 23 a difference in vertical-axis coordinate. (b)

Express your answer as a percentage. (¢) Calculate the slope

of the Hine. (d) State what the graph demonstrates, referring

to the shape of the graph and the resuits of parts (b} and

(c). (e} Describe whether this result should be expected the-
oretically. (f) Describe the physical meaning of the slope.

Dependence of mass on
area for paper shapes

N | : H : 1l
200 400 600
Area (cm?)

| 4% Rectangles Squares 4 Triangles
: @ Circles Best fit

Figurs TP13

When you compute a result from several measured
numbers, each of which has a certain accuracy, you
should give the result with the correct number of sig-
nificant figures.

When multiplying several quantities, the number of sig-
nificant figures in the final answer is the same as the
number of significant figures in the quantity having the
smallest number of significant figures. The same rule
applies to division.

‘When numbers are added or subiracted, the number
of decimal places in the result should equal the small-
est number of decimal places of any term in the sum or
difference. :

Have each person in the group measure the
height of another person using a meter stick with metric
distances on one side and U.S. customary distances, such
as inches, on the other side. Record the height to the near-
est centimeter and to the nearest halfinch, For each per-
son, divide his or her height in centimeters by the height in
inches, Compare the results of this division for everyone in
your group. What can you say about the results?

i34 Gather together a number of U.S. pennies, either
from your instructor or from the members of your group.
Divide up the pennies into two samples: (1) those with
dates of 1981 or earlier, and (2) those with dates of 1983
and later (exclude 1982 pennies from your sample). Find the
total mass of all the pennies in each sample. Then divide
each of these total masses by the number of pennies in its
corresponding sample, to find the average penny mass in
each sample. Discuss why the results are different for the
two samples.

Discuss in your group the process by which
you can obtain the best measurement of the thickness of
a single sheet of paper in Chapters 1-5 of this book. Per-
form that measurement and express it with an appropriate
number of significant figures and uncertainty, From that
measurement, predict the total thickness of the pages in
Volume 1 of this book (Chapters 1-21). After making your
prediction, measure the thickness of Volume 1. Is your mea-
surement within the range of your prediction and its associ-
ated uncertainty?




See the Preface for an explanation of the icons used in this problems set.

For additional assessment items for this section, go to & ' WEBASSIGM
- %%  From Cengage

Note: Consult the endpapers, appendices, and tables in the
text whenever necessary in solving problems. For this chapter,
Table 14.1 and Appendix B.3 may be particnlarly useful. Answers

to ndd-numbered problems appear in the back of the book.

SECTION 1.7 Standards of Length, Mass, and Time

(a) Use information on the endpapers of this book to cal-
culate the average density of the Farth, (b) Where does the
value fit among those listed in Table 14.1 in Chapter 147
Look up the density of a typical surface rock like granite in
another source and compare it with the density of the Earth,

A protor, which is the nucleus of a hydrogen atom, can be
modeled as a sphere with a diameter of 2.4 fin and a mass
of 1.67 X 10~ kg. (a) Determine the density of the proton.
{b) State how your answer to part (a) compares with the
density of esmium, given in Table 14.1 in Chapter 14.

Two spheres are cut from a certain uniform rock. One has
¢ radius 4.50 cm, The mass of the other is five times greater.
Find its radius,

4. What mass of a material with density p is required to make
B8 o hollow spherical shell having inner radius » and outer
radius 7,7

5. You have been hired by the defense attorney as an expert wit-
T ness in a lawsuit. The plaintiff is someone who just returned
from being a passenger on the first orbital space tourist flight.
Based on a travel brochure offered by the space travel com-
pany, the plaintiff expected to be able to see the Great Wall of
China from his orbital height of 200 km above the Earth’s sur-
face. He was unable to do 5o, and is now demanding that his
fare be refunded and to receive additional financial compen-
sation to cover his great disappointment. Consiruct the basis
for ar argument for the defense that shows that his expecta-
tion of seeing the Great Wall from orbit was unreasonable. The
Wall is 7 m wide at its widest point and the normal visual acuity

of the human eye is 3 X 107* rad. {(Visual acuity is the smallest
subtended angle that an object can make at the eye and stil! be
recognized; the subtended angle in radians is the ratio of the
width of an ohject to the distance of the object from your eyes.)

SECTION 1.2 Modeling and Alternative Representations

6. A surveyor measures the distance across a straight river by
the following method (Fig, P1.6). Starting directly across
from a tree on the opposite bank, she walks d = 100 m
along the riverbank to establish a baseline. Then she sights
across to the tree. The angle from her baseline to the tree is
6 = 35.0°. How wide is the river?

Figure PL.G

Problems 17

7. A crystalline solid consists of atoms stacked up in a repeat-
ing lattice structure. Consider a crystal as shown in Fig-
ure P1.7a. The atoms reside at the corners of cubes of side
L = 0.200 nm, One piece of evidence for the regular
arrangement of atoms comes from the flat surfaces along
which a crystal separates, or cleaves, when it is broken. Sup-
pose this crystal cleaves along a face diagonal as shown in
Figure P1.7b. Calculate the spacing d between two adjacent
atomic planes that separate when the crystal cleaves.

Figure P17

SECTION 1.3 Dimensional Analysis

8. The position of a particle moving under uniform accelera-
tion is some function of time and the acceleration. Suppose
we write this position as x = ka™{", where % is a dimension-
less constant, Show by dimensional analysis that this expres-
sion is satisfied if s = 1 and » = 2. Can this analysis give the
value of &7

9. Which of the following equations are dimensionally cor-
rect? {a) U=+ ax {b) 9= {2 m) cos (hx), where k= 2 m"!

i, (a) Assume the equation x = Al + Bt describes the motion
of a particular object, with xhaving the dimension of length
and ¢ having the dimension of time. Determine the dimen-
sions of the constants A and B. (b) Determine the dimen-
sions of the derivative dx/di = 342 + B.

SECTICN 1.4 Conversion of Units

11. A solid piece of lead has a mass of 23.94 ¢ and a volume of
i 2.10 cm®, From these data, calculate the density of lead in SI
units (kilograms per cubic meter).

12. Why is the following situation impossible? A student’s dormi-
tory rootn measures 3.8 m by 3.6 m, and its ceiling is 2.5 m
high. After the student completes his physics course, he
displays his dedication by completely wallpapering the
walls of the room with the pages from his copy of volume 1
{Chapters 1-21) of this textbook. He even covers the door
and window,

One cubic meter (1.00 m% of aluminum has a mass of
270 X 10% kg, and the same volume of iron has a mass of
7.86 X 10% kg, Find the radius of a solid aluminum sphere
that will balance a solid iron sphere of radins 2,00 cm on an
equal-arm halance.
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Letp,, represent the density of aluminum and py, that of iron.
Find the radius of a solid aluminum sphere that balances a
solid iron sphere of radius r,_ on an equal-arm balance.

. One gallon of paint (volume = 3.78 X 1073 m”) covers an
area of 25.0 m2 What is the thickness of the fresh paint on
the wall?

. An auditorium measures 40.0 m X 20.0 m X 12.0 m. The
density of air is 1.20 kg/mg. What are (a) the volume of the
room in cubic feet and (b) the weight of air in the room in
pounds?

SECTION 1.5 Estimates and Qrder-of-Magnitude Caleulations

Nate: Tn your solutions to Problems 17 and 18, state the quanti-
ties you measure or estimate and the values you take for them.

17. (=) Compute the order of magnitude of the mass of a bath-
tub half full of water. (b} Compute the order of magnitude
of the mass of a bathtub half ful of copper coins.

1%, To an order of magnitude, how many piano funers reside
in New York City? The physicist Enrico Fermi was famous
for asking questions like this one on oral Ph.D. qualifying
examinations.

1%, Your roommate is playing a video game from the latest
Stur Wars movie while you are studying physics. Distracted
by the noise, you go to see what is on the screen. The game
involves trying to fly a spacecraft through a crowded field of
asteroids in the asteroid bek around the Sun. You say to him,
“Do you know that the game you are playing is very unrealistic?
The asteroid belt is not that crowded and you don't have to
maneuver through it like that!” Distracted by your statement,
he accidentally allows his spacecraft to strike an asteroid, just
missing the high score. He turns to you in disgust and says,
“Yeah, prove it.” You say, "Okay, I've learned recently that the
highest concentration of asteroids is in a doughnut-shaped
region between the Kirkwood gaps at radii of 2.06 AU and
3.27 AU from the Sun. There are an estimated 10" asteroids of
radius 100 m or larger, like those in your video game, in this
region . . " Finish your argument with a calculation to show
that the number of asteroids in the space near a spacecraft is
tiny. {An astronomical unit—AU—is the mean distance of the
Farth from the Sun: 1 AU = 1.496 X 101 m.)

SECTION 1.6 Significant Figures

Note: Appendix B.8 on propagation of uncertainty may be
useful in solving some problems in this section.

20, How many significant figures are in the following numbers?

{a) 78.9 + 0.2 (b) 3.788 X 10° () 2.46 % 107% (d) 0.005 3

21. The tropical year, the time interval from one vernal equinox
to the next vernal equinox, is the basis for our calendar. It
contains 365.242 199 days, Find the number of seconds in a
tropical year.

Neie: The next seven problems call on mathematical skills from
your prior education that will be useful throughout this course,

22. Review. The average density of the pianet Uranus is 1.27 X
10% kg/m® The ratio of the mass of Neptune to that of
Uranus is 1.19. The ratio of the radins of Neptune to that
of Uranus is 0.969. Find the average density of Neptune.

23,

24,

25,

26.

27.

Review. In a community college parking lot, the number of
ordinary cars is larger than the number of sport utility vehi-
cles by 94.7%. The difference between the number of cars
and the number of SUVs is 18, Find the number of SUVs in
the lot,

Review. Find every angle 8 between 0 and 360° for which the
ratio of sin 8 to cos 8 is —3.00.

Review. The ratio of the number of sparrows visiting a bird
feeder to the number of more interesting birds is 2,25 On
a morning when altogether 91 birds visit the feeder, what is
the number of sparrows?

Review. Prove that one solution of the equation
2.00x — 3.00x* + 5.00x = 70.0
isx= —2.22.
Review. From the set of equations
p=73q
pr=qs
b+ s = b

involving the unknowns #, 4, 7 s, and 1, find the value of the
ratio of {to

i, Review. Figure P1.28 shows students studying the ther-

mal conduction of energy into cylindrical blocks of ice. As
we will see in Chapter 19, this process is described by the
equation

Q  kwddT, - T)
A 47

For experimental control, in one set of trials all quantities
except 4 and Af are constant. (a) If d is made three times
larger, does the equation predict that At will get larger or
get smaller? By what factor? (b} What pattern of propor-
tionzlity of Af to d does the equation predict? (¢} To display
this proportionality as a straight line on a graph, what guan-
tities should you plot on the horizontal and vertical axes?
{d} What expression represents the theoretical slope of
this graph?

Alexandra Heder

Figure P1LI8

ARDITIONAL PROBLEMS

28.

In a situation in which data are known to three significant
digits, we write 5.379 m = 6.38 m and 6.374 m = 6.57 m.
When a number ends in 5, we arbitrarily choose to write
6.375 m = 6.38 m. We could equally well write 6.375 m =
6.87 m, “rounding down” instead of “rounding up,” because




Problems 19

we would change the number 6,375 by equal increments in is made of a material with density 470 g/cm® The space
both cases. Now consider an order-of-magnitude estimate, in inside the shell is filled with a liquid having a density of
which factors of change rather than increments are impor- 1.23 g/em®. (a} Find the mass m of the sphere, including its
tant. We write 500 m ~ 10* m because 500 differs from 100 contents, as a function of a. (b) For what value of the vari-
by a factor of b while it differs from 1 000 by only a factor of able a does m have its maximum possible value? (¢} What
2. We write 437 m ~ 10° m and 305 m ~ 10?7 m, What dis- is this maximum mass? (d) Explain whether the value from
tance differs from 160 m and from 1 000 m by equal factars part {c} agrees with the result of a direct calculation of the
so that we conld equally well choose to represent its order of mass of a solid sphere of yniform density made of the same
magnitude as ~ 10°m or as ~ 10 m? material as the shell. (e) What If? Would the answer to part

{a) change if the inner wall were not concentric with the

{a) What is the order of magnitude of the number of micro
outer wall?

organisms in the human intestinal tract? A typical bacterial
length scale is 107% m. Estimate the intestinal volume and
assume 1% of it is occupied by bacteria. {(b) Does the num-

Air is blown into a spherical balicon so that, when its radius
is 6.50 ¢m, its radius is increasing at the rate 0.900 cm/s.

her of bacteria suggest whether the bacteria are beneficial, (a} Find the rate at which the volume of the balloon is
dangerous, or neutral for the human body? What functions increasing. (b) If this volume flow rate of air entering the
could they serve? balloon is constant, at what rate will the radius be increas-

ing when the radius is 13.0 cm? (c) Explain physically why
the answer to part (b) is larger or smaller than 0.9 cm/s, if
it is different,

. The distance from the Sun to the nearest star is about 4 X
10" m. The Milky Way galaxy (Fig. P1.81) is roughly a disk
of diameter 104 m and thickness ~ 10 m. Find the order of

magnitude of the number of stars in the Milky Way. Assume 36, In physics, it is important to use mathematical approxima-
the distance between the Sun and our nearest neighbor tions. (a) Demonstrate that for small angles (< 20°%)
is typical,

¥P o’

t. = 5] = =

ana = sina = o= T
where @ is in radians and o' is in degrees. (b} Use a calcula-
tor to find the largest angle for which tan & may be approx-
imated by @ with an error less than 10.0%.

empirical equation V = 1.50¢ + 0.008 00, where Vis the
volume of gas in millions of cubic feet and ¢ is the time in
months. Express this equation in units of cubic feet and sec-

The consumption of natural gas by a company satisfies the
onds, Assume a month is 30,0 days.
|

A woman wishing to know the height of a mountain mea-
sures the angle of elevation of the mountaintop as 12.0°.
After walking 1.00 km closer to the mountain on level
ground, she finds the angle to be 14.0°. (a) Draw a picture
. \ R ) of the problem, neglecting the height of the woman's eyes |
.Whjl is th‘efollnzumg. s.ztuarzrm impossible? In an effort t‘o b00§t above the ground. Hint; Use two triangles. (b) Using the |
interest in a te%elwsmn game ‘show, cach wleekily WIRNET 18 symbol y to represent the mountain height and the symbol « |
offered an additional $1 million bonus prize if he or she to represent the woman'’s original distance from the moun-

can perst}nal.ly count OL‘H that exact amount from a supply of tain, label the picture. (¢} Using the labeled picture, write w
one-dollar bills. The winner must do this task under super- two trigonometric equations relating the two selected vari-

MASA

Figure P1.31 The Milky Way galaxy.

vision by television sthW exectitives and within one 40-hour ables. {d) Find the height 5. “
work week. To the dismay of the show's producers, most con- |

: 1l . 33
testants succeed at the challenge CHALLENGE PROBLEM

Bacteria and other prokaryotes are found deep under-
ground, in water, and in the air. One micron {107 % m) is a
typical length scale associated with these microbes. (a) Esti-
mate the total number of bacteria and other prokaryotes on
the Earth. (b) Estimnate the total mass of all such microhes.

. A woman stands at a horizontal distance % from a mountain
| and measures the angle of elevation of the mountaintop
above the horizontal as 6. After walking a distance 4 closer
to the mountain on level ground, she finds the angle to be
¢. Find a general equation for the height y of the mountzin
A spherical shell has an outside radius of 2.60 cm and an in terms of 4, ¢, and 8, neglecting the height of her eyes
inside radius of 4. The shell wall has uniform thickness and above the ground.




